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SUMMARY

A vacuum compatible scanning tunneling microscope has been designed and

built, capable of imaging solid surfaces with atomic resolution. The single

piezoelectric tube design is compact, and makes use of sample mounting stubs

standard to a commercially available surface analysis system. Image collection

and display is computer controlled, allowing storage of Images for further

analysis. Ca]Ibratlon results from atomic scale images are presented.

INTRODUCTION

Solld surface interactlons between materials In tribological contact
remain of interest in the effort to understand and control friction and wear in

mechanical systems. The prospect of probing surfaces on an atomic or molecular

scale holds great promise for understanding these complex interactions. In

particular, exploring the forces acting at these small length scales should

allow a much more detailed understanding of the wear mechanisms operating in
tribocontacts.

Development of the Scanning Tunneling Microscope (STM) was first reported
in 1982 by Gerd Binnlg and Heinrich Rohrer (ref. I). Already by 1986 the

recognized potential of thls new technique and its extensions had earned Binnlg
and Rohrer a share of the Physics Nobel Prize (ref. 2). The technique takes

advantage of the quantum mechanical "tunneling" of electrons between a sharp

conductive tip and a conductive surface a few atomic dlameters away. The quan-

tum mechanlcal probability of finding an electron "outside" a material decays

exponentially away from the surface, providing exceptional sensitivity to
changes in the tip to sample separation. Coupling that sensltlvity with sub-

angstrom tip positioning accuracy allows the STM to map electron density topo-
graphies with atomic resolution.

STM design has advanced rapidly over the few years since the technique

was first reported. Inltlal tunneling experiments were performed by Binnlg

and Rohrer with a platform magnetically suspended In a superconducting lead

bowl for vibration isolation (ref. 3). Various generations of advancing STM
design have lead to the "pocket-slzed" Instrument (refs. 4 to 8), which Is

small enough to be incorporated into vacuum chambers with traditional surface

analysis instruments. One of the noteworthy design innovations was the use of

a single piezoceramlc tube for tunneling tip positionlng In all three dimen-

slons (ref. 9). Use of a single piezotube rather than three orthogonal ele-

ments slmpllfied the mechanical design as well as allowing for more compact
configurations.



Even more recently, the high spatial resolution of the STM has been used
to measure the minute deflections of miniature cantilever beams In order to
measure force (refs. IO to 15). The level of force sens|tlvlty achlevable Is

In the range of Interatomlc forces. The Atomic Force MIcroscope (AFM) not

only provides a probe of forces at the atomic to molecular level, it also

allows imaging of Insulatlng surfaces on the nanometer scale. Since the cantl-

lever Interaction with the sample surface does not depend on conduction of

electrons, the AFM is not restricted to conducting or semlconductlng samples

as is the STM. Additionally, by monitoring the AFM cantilever deflection par-

a11el to the sample surface, a local measure of friction can be made. Much of

the development effort for a STM is directly appllcable to an AFM. The devel-

opment of the working STM described in this report is a step toward the goal

of investigating surface interaction forces at the smallest scales.

DESIGN GOALS AND CONSTRAINTS

The design goals, In addition to creating a working Scanning Tunnellng

Microscope (STM), were vacuum compatibility, use of standard sample mounting

stubs from our commercial surface anaIysls system (ref. 16), In-vacuum sample
exchange capabllity, and small size.

To a11ow control of the ambient of the surfaces under study, the STM

should be ultrahlgh vacuum compatible. Vacuum compatibility prlmarily requires

that the materials used in constructlon not evolve gases (outgas) when placed

under vacuum. Many metals and ceramics meet thls requirement, though very few

plastics, adhesives, or lubricants do. Steel, stainless steel, and ceramics,

with minor exceptlons, were used excIuslvely in the construction. In no case

was a materlal used which would provide a major source of outgassing when

exposed to vacuum. The specimen holder was designed to accept standard sample-

support stubs compatible with an existing surface analysls facility (ref. 16).

The speclmens were to be removable remotely, since the STM would be Inaccessl-
ble to the researcher when under vacuum.

Tunneling tlps were electrochemlcally etched to a sharp point In a one

molar sodium hydroxide solutlon. A 6 to 8 V ac potential was applied between
the O.O16 In. tungsten wire to be etched and a concentrlc cylindrical stain-
less steel electrode fashloned from thin sheet stock. The current was not mon-

itored. _cannlng Auger electron spectroscopy analysis of a number of tips
Indicated the existence of a carbonaceous contamination layer on every tip

examined. Argon ion sputtering removed most of the contaminatlon layer rela-

tlvely quickly. Both sputter-cleaned and unsputtered tips were used in the
STM.

Two major concerns In the mechanical design of a STM scanning head are

for thermal stability and for Insensitivity to vibratlon (ref. 17). Small STM

size can help wlth both design goals. As well, small size simplifies mounting

of the STM head In a vacuum chamber such as the sample preparation chamber of

our commercial surface analysis system.

Thermal stability becomes Important when two objects are to be held a few

angstroms (10-8 cm) apart with the support _oints for each from millimeters to

centlmeters away. Nith the difference in thermal expansion coefficient between
plezoceramlcs and most metals of the order of IO-5 to 10-6 C-I, a change by a
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slngle degree Celsius for a centimeter of support dlstance will cause a gap
distance change of the order of I00 to I000 A. If the gap is to be stabile to
better than an angstrom, then the temperature regulation must be to better than
I/lOOth to I/lO00th of a degree Celsius, whlch is difficult to achieve. Mini-
mlzlng the separation between points of support and matchlng coefficients of
thermal expans|on to the extent possible help reduce the temperature control
requirements. High data collection rates also help mlnimlze temperature con-
trol requirements by reducing the thermal drift that occurs during a data col-
lectlon scan.

Acoust|c vibration of the STM head can defeat attempts to control the
position of a STM tip to within a fraction of an Angstrom. Complimentary
approaches to avoiding this problem exist. Isolation of the STM head from
sources of acoustic excitation can be pursued, and is employed In nearly all
STM heads to some degree. The methods used range from the simplicity of a
stack of damper-separated support plates to multistage, magnetically damped
hanging platforms. Insensitivity to vibration by deslgn can also be employed
to reduce the vibration isolation needed. This is a complimentary approach to
reducing the effects of vibration. By designing relatively stiff STM head com-
ponents, low acoustlc frequencies can be made to only oscillate the entire
assembly as a unit, leaving the tlp to sample separatlon unaffected. For
v|bration insensitivity, smaller, stiffer components can be advantageous.
Since the STM generally cannot be driven faster than the frequency of Its low-
est resonance vlbratlon mode, the lighter, stiffer, smaller designs will allow
higher frequency scan rates as well.

The STM design described in thls report utillzes a single plezoelectrlc
tube for f|ne mechanlcal positioning of the tunneling tlp, wlth a fine-screw-
thread miniature translation stage for coarse and initial fine sample posltlon-
Ing (fig. I). Data collection occurs synchronously during computer-controlled
plezocrystal-generated raster motlon of the tip. Fine positioning of the tlp
in three orthogonal directions with a slngle piezoelectric tube Is achieved by
sectioning the outer electrode of the radlally-poled, horizontally mounted tube
Into four equal quadrants (ref. 9). Applying a voltage between all of the
outer sections and the inner cyllndrlcal electrode produces an overall elonga-
tion or contraction of the tube (Z direction). Applying a differential volt-
age between opposing outer electrode quadrants causes bending of the tube (X
and Y directlons). The sectlonlng was accomplished by masking all but narrow
axial strips of the outer electrode, and using a very fine sand blastlng to
remove the nlckel electrode material.

Coarse sample posltlonlng is accompllshed with a mlnlature translation
stage having a 6-mm travel. As the sample surface Is brought up to the tunnel-
Ing tlp, the sample support stub encounters pivot polnts close to the tip. The
entlre specimen holder then pivots around these points with further advance of
the translatlon stage. Flex pivots (ref. 18) allow plvotlng of the entlre
specimen support (fig. 2). Because the distance between the tunneling tip and
plvot points Is much smaller than the distance from tip to flex plvots, the
stage advance is mechanlcally deamplifled for the sample approaching the tlp.
The ratlo of the distance from tip to pivot point versus tip to flexure jolnt
determines the deampllflcation ratio. A typlcal distance ratlo would be from
20 to I00, depending on exact tip mounting position and chosen height for the
pivot points. For a deamplificatlon ratlo of 50, the sample advance per fine
division on the translatlon stage mlcrometer is reduced from 0.02 mm to 400 nm,



allowing careful manual advance of samples to within range of the tunneling
tlp.

For vibration Isolation a stack of plates separated by Vlton spacers was
employed. V|ton Is a hlgh vacuum compatible elastomer which helps attenuate
hlgh frequency acoustic vibration. To prevent high frequency acoustic coupling
through the electrical connections, the wires used were flne gauge (38 AWG),
and were mechanically coupled to the stack plates through split Viton pieces.
When the STM was used In alr, an acoustic cover lined with sound deadening foam
Isolated the STM head from room noise. For low frequency isoIatlon, the entire
STM head assembly was Initially swung from elastic cords close to the control-
llng computer. Thls proved sufficient to allow atomic resolution images to be
collected.

ELECTRONICS

Raster voltage generation, data collection, and a tip-helght control feed-

back loop are needed for constant-current Imaging of sample surfaces. An

existing two-channel, dlgital-to-analog computer Interface card (ref. 19) was

programmed to generate the required raster pattern voltages to drive the X and

Y quadrants of the STM piezocrystal. An unused analog-to-digltal converslon

channel on the same Interface card was programmed to dlgltally capture the STM
output wlthout disabling the computer-controlled instrument wlth which the

computer originally was purchased (ref. 20). The dlgltal-to-analog and analog-
to-dlgltal channels of the computer Interface card all had 12-bit resolution

wlth a maximum range of lO to -lO V. The dlgltal-to-analog channels were In

fact configured for 0 to lO V full scale output for Increased programming reso-
lutlon. Over a lO V span, 12-blt resolution yields control of one part In

4096, or approxlmately 2.4 mV mlnlmum programmable step slze. The analog-to-
digital Input channels also had programmable galn factors of 2x, 4x, and 8x.

These galn factors yield resolutions of one part in 4096 over full scale ranges

of ±5.0, ±2.5, and =].25 V, respectlvely, in addltlon to the ±lO V range wlth
unity galn.

Tunneling tlp to sample distance was controlled using an analog feedback

loop. As the tip position over the sample surface changes, constant adjustment
of the tlp positlon perpendicular to the surface (Z directlon) Is needed to

prevent physlcal contact between the tip and sampie. For thls purpose, the

output signal from the STM head was amplified and used to control a Kepco BOP

lO00-M high voltage power supply drlvlng the Z electrode (Inner cylinder) of
the piezoelectric tube scanner.

As with any Iarge-galn feedback-controlled System, instability can develop

for some comblnatlons of loop galn and phase delay. A somewhat slmpllfled

analysls of the requirements for STM stability has already been published
(ref. 21). Fundamentally, the response speed is limited by the mechanical

response of the scanner head to drivlng voltages. If the feedback loop ga!n !s
too large for a glven response tlme constant, the system will be unstable and

will osclllate. However, the lower the galn the larger will be the variation

In tlp to sample distance during a scan, unless some form of Integrat_ng ampli-

fier Is used. N1thout an Integrating amplifier, the feedback control output Is

essentially an ampIifled error signal, which will then be larger for lower galn
loops. A constralnt In using the STM then, particularly for large area scans,

Is the speed and magnltude of the tlp response.



To minimize stray electromagnetlc slgnal plck-up, the flrst stage of elec-
tronic buffering was brought as close to the tunneling Junction as possible.
A high Input Impedance operational amplifier Integrated circuit was mounted
dlrectly behind the tunneling tlp, aboard the piezoelectric tube support. Thls
acts as a voltage follower, buffering the signal to outside circuitry. When
operating properly with feedback control of tip position, the tip potential Is
kept very close to 0 V (flg. 3). The circuit shown allows independent control
of tlp to sample potentlal and tunnel current because of the high input Impe-
dance of the operatlonal amplifier (ref. 22). The next stage of amplification
was an EG&G Princeton Applied Research Model 162 dual channel boxcar averager
with two Model 164 Processor Modules. Using the integrating mode thls Instru-
ment eliminates steady state error of the tip voltage, and provides control
over time constants as well. The boxcar averager output was used to drive a
Kepco model BOP IO00-M power supply, modlfled to reduce 60 Hz ripple (ref. 23).
A passive voltage divider was used between the boxcar averager and hlgh voltage
power supply as needed to control overall loop galn.

CALIBRATION RESULTS

In order to calibrate the transverse motlon of the plezoelectric crystal

tube scanner, a highly oriented pyrolytic graphite (HOPG) sample was attached

wlth drops of silver paint to the sample mounting stub from our commercial

x-ray photoelectron spectroscopy system (ref. 16). Before insertion of the

sample stub Into the STM, fresh graphite basal planes were exposed by cleaving

the HOPG crystal using adhesive tape. Flgure 4 is a gray scale "top-vlew" of
the HOPG basal plane data. The Image Is 31A on a side. Only half of the HOPG

surface atoms are typically vlsible via STM (refs. 24 to 25). Every other atom

In the HOPG surface net does not have an atom directly below It In the next
atomic plane down, causing the asymmetry between adjacent surface atoms.

The piezoelectric drlve calibration constants can be calculated from the

known spacing of the visible atoms on the HOPG surface, 2.46 A at room tempera-

ture. The presence of thermal drlft durlng Imaging introduces addltional

uncertalnty into the slow scan dlrectlon calibration. In order to minlmlze

thls uncertalnty, the fast and slow scan Input leads were reversed for a number
of Images, then switched back. The calibration constant for the Y-dlrectlon

motion Is calculated from images in whlch the Y-dlrectlon quadrants were the
fast-scan electrodes.

An assumption made for the calibration calculation is that the surface net

itself Is not greatly distorted, which is reasonable for the relatlvely stiff

in-plane carbon-carbo6 bonds of the graphite sample used. The observed Image

distortion Is then assumed entirely due to thermal drift, Inltially ignoring

any possible nonlinear piezocrystal motlon or quadrant crosstalk. Again, this

Is a reasonable assumptlon due to the relatlvely low drive voltages used. The

data taking rate Is known, as Is the sequence In which the points were col-

lected. The following Iteratlve procedure was used to minlmize the effect of
thermal drift on the calculated calibratlon constants. Lowest order approxima-

tlon values are derived for both the X- and Y-directlon quadrants from atomic

resolution Images, assuming negligible drift during a slngle fast-directlon

line scan. From distance and angle distortions of the atom posltlons In the
slow-scan direction of the images, a first approximation of the thermal drift



rate and dlrectlon can be calculated. The effect of thermal drift during a
fast-dlrection scan can then be determined. If warranted, the corrected fast-
direction plezoelectrlc motlon constants are then used to recalculate the rate
and direction of the thermal drift.

For the calculation, two atoms centered on the same fast-scan llne are
chosen, and the center plxe] of each determined. The center-to-center separa-
tlon of the atoms in plxels, bits changed per pixel, millivolts per bit, and
known graphite atom spacing and geometry are then used to calculate the ang-
stroms of motion generated per volt across the plezoelectric crystal elec-
trodes. The X- and Y-motlon constants are 48 and 52 A/V, respectively, from
images In which the low measured drift rates Indicated no need for iteratlve
corrections. Motion constants of this magnitude allow relatively low voltages
to be used to image useful areas, without requiring mIcrovolt control in order
to achieve atomic resolution.

SUMMARY

The design, construction, and callbratlon of a scanning tunneling micro-

scope has been successfully completed. Using a single plezoelectrlc crystal

for flne-scale motion, atomic resolution images of the graphite basal plane

have been collected. The design is vacuum compatlble, requiring only mounting

modifications in order to be supported in a vacuum chamber. The instrument

can be used Immediately for relevant research at atmospheric pressure. The

expertise already gained during the development process also can be applied in

atomic force microscopy. There are currently no atomic force microscopes com-
mercially available, while the potential applicatlons are numerous. The scan-

ning tunneling microscope currently provides very fine scale measurements over
a llmlted scan range. Ongoing development work is underway to extend the

accessible scan area by more than an order of magnitude, as well as provide

slmple spectroscopy capabilities. Developments In the STM/AFM field should

continue to make Important contributions in a number of research areas for many
years to come.
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Figure 1. - Photograph of Scanning Tunneling Microscope head on vibration-isolation plate stack. The
sample-mount swing arm and on-board electronics are not mounted so that pivot points, tunneling tip,
and piezoelectric crystal are visible.
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(a) Sketch of main scanning head components; base with piezoelectric tube and
pivot points mounted, miniature translation stage with mounting hardware, and
sample mount swing arm and holder.

Figure 2. - Scanning tunneling microscope mechanical design.
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(b) Illustration of mechanical de-amplification of motion achieved by pivoting around points
close to tunneling tip.

Figure 2, - Concluded.
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(a) Onboard voltage-follower circuit, allowing independent control of tunneling current and tunneling
potential by external voltage sources.
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Figure 3. - Scanning tunneling microscope electronics design.
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basal plane showing alomic resolution, uncorrected for thermal drift and
rectangular screen aspect ratio. The distance between visible atoms is 2.46
Angstroms. Every second surface atom is imaged, giving the "centered-
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q

m

.-Hr_ r'_,,

O

11



Natione] Aeronautics and
Space Administration

1, Report No.

NASA TM-102514

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Design and Calibration of a Vacuum Compatible

Scanning Tunneling Microscope

7. Author(s)

Phillip B. Abel

5. Report Date

March 1990

6. Performing Organization Code

8. Performing Organization Report No.

E-5317

10. Work Unit No.

506-43-11

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

15. Supplementary Notes

16. Abstract

A vacuum compatible scanning tunneling microscope has been designed and built, capable of imaging solid sur-

faces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting

stubs standard to a commercially available surface analysis system. Image collection and display is computer

controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are
presented.

17. Key Words (Suggested by Author(s))

Microscopy

Topography

Surface properties

18. Distribution Statement

Unclassified- Unlimited

Subject Category 35

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price"

Unclassified Unclassified 12 "A03

NASAFORM16=SOCT_ . For sale by the National Technical Information Service, Springfield, Virginia 22161


